WITHIN-NEST BEHAVIOUR IN A EUSOCIAL AUSTRALIAN ALLODAPINE BEE EXONEURA (EXONEURELLA) THIDENTATA HOUSTON (APIDAE: XYLOCOPINAE)

Abstract

Summary Brderstandine the processes involved in the evolution of social behaviour has become one of the most challenging arean of modern hiotugy, Since been and waspe eabibit a vatricty of oncial arganseations they are examinity social evolution. since species display varying forms of sockl ongansation from solitary to eusocial. This sludy exmmes whithin-nest behavisur of Eume bee. This speciox hat the lanest known colony sece of amy allodapine bee and exhibis striking size variation atong kemale nestmates sugeesting that sociality mily be regarded as highly ensnctal. Here we asxemble a owheralbidapines, this species differs hy the marked presence ofovet aggession displayed in the form of hining. where here is usually lifle of no aggression but insead "gente despotisto".

Introduction

The allexdapione bees provide apportunities for eotopasative approatheg to the evalution of social hehavisur beconse of the wide range of soctial organsadion whith and between spectes and genera OHE shall and endemic Australian subgenos Fremetrollo contains foners species thad range fiom the prademmantly selitary Etomarara lowsomi Rayment (Michener | 965) to the ensodial E. tridemala (Houston 1977. Hursi \& Sethwar 1996).

In mase comparative sludies of insect social evolution Ibere is an implicit assumption that small calony size is associated with flexible and hehaviourally mediated mopodentive shew. The mambenance of dominance bicrarchies y ia physieal agonisot is consudered a promiliye bail CWikon 1071, Corresprondingly, Jarge colony sizes with stong reproductive bkew and non-igonistically mainmined heramehies are fobaty regaded as atore derived trats. Witson (1971) suggested that less sophisticated forms of serial orgavisation would favolve physteal meetranisms of control such ab decression mittoma colony but that thix is replaced by "genile desperism" in more advanied formo of ouchatily It is atow gencrally assumed that a bigh level af betravomal spectalisalion is a more derived trait and that this ean lead or trigher levels of colony efliciency (reatione 198or. However the rdeat that different firms of sugal argamisation cant be

[^0]abranged in a sequence of promite to 'advanted his been questionced (Kukuk 1995) but Few studies have explititly investigated whether 'primitive' or 'fulsaneed' lorms of setciality within tasa correspond If hasal or distal positions whithin phylogenctic trees,
Exomewa midentate is at Australian allodapine hee that tives in semi-atide envirumments. Thin speciec has the largest known cotony siace of any allodapine bee and exhibsts mopphological dilferentiation botween putative castes (Houston 1977. Hars \& Schware fough. Math of the information aboul sorcial orgamisation has been inferted finan dissection of nest decupates and brief ebservations of females oubide of their mess (Douston 1977; Hurs! umpuh.). It is suspected that this veceies exhibits caste diflerentation, where large fermates flemed 'Majurs') are queen-like and smalles lemates ('Minors') ael as workers within the Eolonies. (Hosison 1977 Hors 1096). I lowever. wholn-lest bethatoural sludics have bot been carried ond to assers whether these two mophis really ane Gelsaviourally distinct. Colony sta mjd the assuctition between morphotoxy and reproducive shatus suggest that this species more closely approaches the highly cosecial fom of organisation chafacteristic of apmes. melipenine and highly eusucial hatieline heus. Han any other allodapine hee.
This study investates whithenest behaviotif ill observation colonies of E. tridentals. A tepertome of behasiours is presented there in the lorm of is bebasioural satalogue and compared with other behavioural stodics of allodapines. These data will dore be used for specilie analysis of hehavisural

publications. Fow addition. the idea that moppholsgical caste differentation and large colony size are astonctated with low levels of agonisin in colomy imeeration is diseussed in retation to the social ampanisulion of E. tritentara.

Materials and Methods

Stredy sites

Exmemrat Hidentata nests were-vollected from Lake Gilles Contservation Park ($13648^{\circ} \mathrm{E}, 3254^{\circ} \mathrm{S}$) lawaed in the norfit east of Eyre Penimsula. South Austaslia. In this area, E. wridonata nests were primcipally in distased beetle hurrows excavated in $A_{\text {e ac }}$ a pupvoratpa Bentl. (Western Myall) and Hatyelroon aleiofoliam (Dest.) (Bulloet Busho. Deal branches al both tree spocties were exammed for nest entences f.e. the exit holes made by the original becfle socupanta Thtaet dolonies were collected ubring Fichruaty 1995, Field collection of nests took place when lemperatures were cool (12 C-30) C') de ensare flat all becupants were present. Once an entance hole was lowach the brancl was removed, entrances were blocked with tissue paper, the branch was placed in at wategreot bag and stored in itl insulated containet with ice fors Wabspart for Fiaders University.
At Flinders Universty the nesse were stored in ad constant temperature room at appooxintately 10 C for processing. Nests were openes bsme a knife and all mest cecupants, includnge horet amd ness contents sach as poillen. were transferred to a Peri dish. Adults were individually marked using Hambrolim and Testors ${ }^{\text {IM }}$ enamed paimls applied to the thorax and metasoma, Bee colonies were then fransterted to arrificial whacrvation neste
Artiticial nests were simitar in desien to those deseribed by Schwar? \& Oyerholl (1993) hut were mate of pinc wood instesta of batsa. Each bess consisted uf a rectangulat pieve of untreated pine wood $210 \times 20 \times 1.5 \mathrm{mme}$. gronve wan gouged inta
 The graove was smonthed out wibl a metal rok tot remove any splonare ol worsd. A piece of glass. 210 \& 20 cmm , was plated flesh aganst the greove and secured in both ends witl imsalation sape. A black sardtherad equer was placed wer the glass so excloside ligha herween wheryation periexds.
 in is shade house at Flinders University one ond of the shade bothe whe open so that bees enold forage fiecty muside. Nes entomes fased the opet end of the shade house A maximum of four gests was plated on eact bray with approximably $1,5 \mathrm{~cm}$ therween each nest. Obseryalion nests were first placed in the shade housc it dask 5-f doys aflem collemion and apeming. This ensured that the beer
had approximately 12 hours in die athisial nest of allow their odsurs to permeate the nest betore it was possible for them to leave the next momings. Sticks were haphazarslly plated near nests to atet is wistal cues for returning bees.

Behavionural obserwations

Once observation nests were set up hoes werc allowed to adjust to their new envirsoment lof one week betore whservations began. Data collection invesved 'scan' and 'tiacal' sampling eechorques: 1Aloman 1974). Scan sampling imativad recerdeng the persilion of each individual on the observation nest usiog a 5 mm stale along the glass and was eonducted immediately before and atter lineal simpling. This was done to determine whether cerlain bees were sendige more lime than others in certain ateas of the nesto for examples veitr the entrancent near the hrood. Foeal sumpling invelver 2 min whervations, of cakh bee 11 at nest. Nests and individetis were randomily selocted each day for order of sobservations. A beathand magnifion (x 5,2 magnificafion) wats used to observe the behusiour of individuals. All behaviouss pertormed in a 2 miln perised for eath individal were neconded into a voice operated recoctere Observations were tramseribed on to datia sheets at at fater dater These behavioural daia were used to considued ifie bethay boural eatalogue and later to examime hehavioural spectadisation.
Behavioural observations took place in the-iffernumen. ($13000-1700 \mathrm{~h}$), when temperatures were ≥ 20 C and bees were setive In totat, in nesis were abocred with up te fisun hests houge bowerved ill any ond sespion. Tathe I provides information aboui whiehnests were ofserved, when they were obsenged and how inamy miontes of obseryahom kath bee peid beat reseived. In addition, the numhers ol' bees thal were presemt for the intial and lioat shoservatum perioks are givety.

Results

field-eoltected ineshs.

The contents of nests colfected in teportatry To4s are summarised in Thble 2. During these samplang periods, estomien thed Inr hehavioural uhservalions. twete reating lowig. In early Fehratey ealmoics. contained hroed of all developmenal samere. i.e. fages, larvac, prepupac and puphe By late Februany lemate beces in the eotonies had abmost fedned cest
 and pupme There wats at greal deal of varialiont ith the number of adult lemales peresent in a nest, rangiox lixims 1-18 (Fig 1)

Table I. Details for mesis of Exoneura tridentata ohererved in this stmdy

Nest	First observations	Last observations	Total number of observallion periods per nest	Total minutes of observation per bee per nest	Initial no. ol ${ }^{\circ}$ Individuals	Final no. ol Individuals
1	7 Mar .	$14 \wedge \mathrm{pr}$	15	$30)$	8	$5{ }^{1}$
6	7 Mar.	14 Аpr:	15	3)	9	54
9	7 Mar .	14 Apr:	1.5	30	9)	$12^{\prime \prime}$
12	7 Mar :	14 Apr.	15	. 30	1.3	$15^{\text {b }}$
3	SApr.	4 May	14	. 38	5	5
t	5 Apr	4 May	19	. 38	4	$5^{1 /}$
20	5 Apr	4 May	19	. 31	4	$5{ }^{\circ}$
30	26 Apr.	16 Maly	20	41	6	51
43	26 Apr	16 May	20	40	3	413
56	29 Apr .	16 Mily	20	$41)$	4	4

Decreases in the number of indivduals were probibly due to denth whilst foraging or dispersall to other nestsa Increases were due to the addition of newly eclosed bees ${ }^{\text {b }}$, or intruders which swapped nestsc.
 Somfl Australia.

Nent contens	Me:m value (\pm S.E.) for early February ($\mathrm{N}=24$)	Mean value (\pm S.E.) for late February ($\mathrm{N}=13$)
Egen	1.21 (0.57)	0.08 (0.08)
Larvac	1.75 (0.6.3)	(0.62 (0.27)
Prepripue	0.67 (0.28)	(1.31 (1).13)
I'up:	2.42 (0.72)	2.23 (0.71)
Majurs	1.17 (0.10)	1.23 (01.34)
Minore	$4.17(0.8 .3)$	4.3811 .3011
Mialco	0.3 .3 (0.13)	(1.38 (0.2)

beburianmal rapertorize

In the lollowing hection belationurs ohserved duringe the stady ate prestulled as a hehavisumal catalogace.
 groups wefer inter-connected or overlaping: (i) selt mantenance hehaviours. (ii) nest maintenathe bebalsiours. (iia) inter-adall behavionts. and (iv) adall-broos interations.

As) Cllove:

Bees were recorded its heing "inative" when mot wher behaviour wats being perfomed. Dametivy wten oxemened within ab hehavioural sequence. Fib example a bee contld stop gromming be inatelive for some time, and thed davel forward in the nest. Bees could either be standing 'uprighte' or they comblat be lying 'npside donvo' an the floor of the nest. Miactit er al. (1992) incluted silight movernents in their deseription of a similar behaviour, "Resting" llomever, in this sudy bees were only reconded is

 Suntr Aumalia, Vibuay 1505.
inactive when they were motionlestis. Axomoura Whedentafa spent it targe amount of time inactive Since mactivity can secur within and between behaviomsal seypences is is diflicell to show Hemerically the amount of time apent inactive bectuse of the way the data were estleced. Generally, though, the bees were more active when lemperatures were >30 (and/or when a lorager setumed.

SEL.I CiROOMINO

"Giromming" was observed lrequently, and included any uefivity where the body surlace was cleaned Sequences fon cleannge different areas of the hody were somilar to those reported for Braconseppis Temetri Cameron and Corminter spp), (Macta efod. 1992), The mose common seypences were: (a) head cleaned by imiially wiping if Forcleg with the proboscis then foreleg ased of wipe the length of the ambonace. beginaing the thase, foreleg again wiped with the probosecs, hollowed by the wiping of the head wilto the lorelegs, (ty) the metasomia was clerined hy bsing the thbial spers of the himallegs for setape nil dust/poilen, (e) the horatx was cleaned with the mid legs fthe metasona and the thorax were often goomed at the simbe time wath the different legn), (d) The witgesurtaces were grosmed by dengging the whins under the metasoma whit the hind leas. wiping them between the metasoma and hind legs. und then flicking them back into position. (irnoming did not necur its one long unimiertupted sequence as has heen observed ful B. hewilli (Mactia el at 1992), Gpooming could he hricf or lese lor the whole 2 min observation period.

This was intermittent behaviour; which wath often absecved during long bouts bl inactivity. and behayGour comprised slizht movements of head, body or legs, which did not movelve anly ofler lype of hehav15u.

IRNVAIINC:

"T ravelling" involved mowion forwards ut back wads up) ar down the reat for $1-20$ cm Bees that were travelling were usdally very active but the travelfing spoed varied. Tavelling forward often resulted in a bee comine inko contace with others und was usunlly collowed by "paswing". (see below).

ITRNING

"Turning" was used fo deseribe a change of direction in the nest. Turning involved curting the body and somersauting, fesulting in the heo ficing the opposite direction. Both Majors and Minors appeared for furn with equal ease. This hehavinur mecorsed anywhere in the ness botike that in

Cereltina spp. which have a turnong huerow enlargement near the nest entrance (Macta et at 1492). Thirming ollen uecurred als purt ol a sequence of behaviours during interactions between individuals. i.e. it could oecor during sequencen which involved "nodging", "passing" or "avoidance" (sece below), if at bee ipproached bus avolded atovilice bees, it mighe either "travel" up to the bee, and then hack aw dy or if might "turn" and "Travel" in the "pponte dinection.

NESTAR DLHYDKATOON

Individuals were observed llexing and hending the probuscis and athengh droplets of nectar erould man be seen with at the magnifieations used, if ives dssumed that they were dehydratiog nectar as hats been observed in other allodapines after lecding (Michener 1972; Macta et ad. 1992), Sume bech , lowly rully extended and tertated the whole probosecis without hending it. The prohnseis was exteoded and held out lot abrut 20 sea then refacted before being extended ugain. Some individuals spen the whole twn mion whervation perfod perlorming this hedraviout:

NEST ABSENTRESM

When individuath were regulady absent lionm the neat it was assumed that they wete forueting. However, if they were absent for more tham 5 obser vation sessions in at row. it was assumad that they were either desd or had dispersed, Absentecishl (iur fordging adivity) wat only observed when remperathes were ≥ 25 C. Fompers were identificd when they were seen retuming to the hest. Upon betuming, formgors usually worked them way down the nead pissing and interacting with other imftvichals, often having "buceal enntaci" with uther individuats presumably providite then with neear (see inter-aduht behaviours). Often gueh on bee would then leave the nest mgain and retnon later. Foragers were not shserved leeding barvae.

NESI MANTENANCE BehAymurs

(3) AR19NE:

A bee was recorded as "gearding" when it orecupicel the position closest for the nest entance with its borly ariented so that its head was facing away from the entranes. Such a position aflows the motisuma de block the nest entrance fixat intruders, its recorded Ber other allodapine hess B. Wewitti (Minela of al. 1992), B. mista (Batra oq at. (993) and L B bicalow (Melna \& Schwaty. 1ty 3). Dering guarding the bee was intactive either un its back or standing upright, if a bee was closest to and facing the nest entrance, it was mot recorded in guadting since bees 10 thes position woald often be of the proeess of leaving
the nest. Minors were offen seen guarding and io wome nests. Majors. particularly ege-hayers, were not seen to ghard at atl.
Guarding did mot always oeeur mear the mest entrance, In some nests the "guard" was stationed 1/4-1/5 of the 4ity sown the nest but was the bee closest io the acse coltance. These guards were somefimes seen th 'paral' the nest from that section ap to the entrance. This involved the bee raprally "ravelling" forwad, whila ropidly antennating ("inspecting") the nest lumen before returning to the ghard position. In some nests it also appeared that iwo individuaks would guand aletnately or one in fromt of the mber. Athough there were times when bore than one individual was seed it the guarel position. there were individuats who never "gharded". Duriog the sfudy no othe invertebeates wate whateved emering the bests. Sinee there was no interference from sther invertehrate predatoss in the soptise stuation, guardime in this stady may mot reflect natural hehavioum of this species.

INSPEC LINO,

This hehaviout involved at bee aternately antenmatiog oblects, for example the nest wall or brood, Eegs were frequently untennated in this way. Somethmes hees travelled up and down the flest inspeetong the fumen wall During this hoshay ionir bees moved their heads stightly and fapidly moyed intennas.

MOVINE TEPBRTS

Debris in the tres was moved by passing it under the body with the forelegs, to the hind legs then pusthing backwarks with the hod tegs or metasomal This behaviout was rate (apposex 0.3% of the boservation tince). since the nests were in hard. fine-grained wood which reguised lite maintenames. Detris observed in fre nest inctuded seaviat and. ofcasoonally, dead individuals, "Moving debris" was not ustally observed untess temperaturos were $\geq 25 \mathrm{C}$.

svoll Manc?

"Avorstance", a combmation of sther behavisurs. invalved bone individual traveding rewards almotict individual and "antembeting" ebthe the metasomei of lace of that indivedual and then stidenly tomeking
 dixection.

NATHENAT दONIAST

"Antennal contact" kesompanied most inter-aduh behaviours. When ati indovidual estone in to contact with amolice individual is enther "anternsited" He
orber's metasoma of face. II individuats were face-to-face the lwo individuals tapped each others. antemnte

"Passing" is the exchange of posilions by nest mates. Passing memned when individenals were either Jacing each other of the "passer" was lacimg the inctusoma of the individual she intended to pases. In each case, Eidividuals mitented trenselves ven ler-lo-venter, estentially wilhing over each other: A pass was either simprle of complex. "Simple passine" involved the smosth exchange of positions. with individeats usuadly flatening theie bodices agamso the nest wall. "Complex passinge" Imotved sone individual biting at ansthes individual's bonly partis. andor strugeling and graspme each offor with the legs. Either boe or both individuals would hite Sonestimes oge Jnderidal would bite the otber on the ventral site between the metasemet and the Hograx, near the articulation befween the noshanter and the thorax. Passing somethmes involved brich "bucceal combet" betweon the lwo individuals. abthough it was often difficult to deleanine elearly whether buccal contact trad actually secoured. If wate not always Lasy of distinguish between the passer and the "passed", execpt whers one was initially stationary and another wis travelling.

BHECAL Gantate

Iodividtals were often wherved to bueh eath bther's open mandibles with their awn spen mandibles, this was termed "bused contast". Whon ibdividuals were involved in such interactons, one individual was slanding upright and the other was positioned upside down. Individuals also engaged in bried baceal contact during passing. During appoximately 5% of befecal contact interactoms. neetar flow bedeeco the mourh parts of individats was ohserved and individuals were onserved plating their proboseis between the mandibles of another individual, Proffering of globules of nectar (Melna Q Schmara 1993), was not ohserved in E. Iridemfrila.

"Nudgine ${ }^{*}$ involved one individual using its fuce to nudge on huti the metasoma or lawe को another individual. The bee that "mudged" was msually upright. Nudging iswally resulted in one of the following:
a) The nudged individual fumed and the nudger retrealed, which sometimes inystved the nudged hee spenime ils mandithes.
b) If nutged fimm behind the bee heing oudged would sometioncs position its antennac laterally (ott to the side). Then if nodged tgain it might open its mandibles. This eventuilly resulted in the hoe
ivming, investigating the "nudger", and then smpte or complex passing and/or bucal confacl.
c) The nudged or the nudger passing and "biting" cach other:

MAMI IBELLATINE
Mandibulatitg, i.e. the opening and elosing of the mandibles not associated with eating, appeared to necur hefore biting encoanters. In some cases if appeared that mandibulating was at signal that one individual was rejectite an approach from another individual. for example ' A ' approached ' B ', ' A ' nudged ' B ', 'B' then opened mandibles. ' A ' then refreated. "Bifing" encounters somelimes folfowed. Similarly. if an individual was nudged liom behind it semblimes opened its mandibles and/or turned and faced the nudger often opening the mandibles again. In addition, llattening of the antenate lateratly often ovewred during mandibulating, This sonclimes veentred when modividuts same face to face or if one was nudged from bohind.

BHING:

In this study aggressive enetunters were obseryed for E. widetwata. These involved biting if mandibles, sutenosac neek, legs, the ventral side of the thorax, around the coxale and metasomat. Otten when one individual tried to esape from suetr an oneounter the wher bee woukd pull it boek using its forelegs. "Biting" encounters ware stien complex. For example. 'A used its lace to nudere 'B's laces. Then one or both bees spened the mandibles and a complicated pass followed. Whitsi the thees were ventex is vemet and struggling tholding wach other with legs) one would hite the sther on the vemoral side of the thorad. Alter astrugelo, the bitten hee whe uften shserved on tis hach while the boter hold the othe toxe's antenme in its mamlibles. it a "ruy nifaver" encounter. This tug-ul-wat could lant for 10-20 see. Eollorkite a tug-at-wat eneromber the inderidues es hich had imethated the piess the blemens sometimes attempted or pass deain sod often at smple pass would fotlow.

ADPU:I-BROOHS INITRACTIONS

18. ADINAAIGON ar lokerolz

Examigation at bread wath decomplished wirl the athenmie, and. 10 a lessef extent. the mouth paiss (openmy and closame namdibles of the brood) Indiviluals lapped pupace. larsak or egegs. whth cikch anceroma

Browd were somalmes nudged before they were thoved. Thes betmetour did not esesti. however, is the hromal , ppprabably changeng positiont

MOVING; BROOD

Older brood (late instar larvaes prepupae and pupae) were usually moved in a way similar to the way debris was moved in the nest. In E. Iridenata. simila to E birolor (P. S. Hurst pers. comm. 1995), the bee initially held the brood with the fore tarsi then passed them under the body and pushed thom backwards using the hind legs. Repositioning of brood accurred often within the nests of E. rridentata. Sometimes a bee would move each pupa until is reached the end of the nest, then it would nove theni all back again: seconds tafer another individual sometimes did the same thing. Some Minors wheh consistently stayed near the brosed were ofien ohserved performing this behavious: In addition. hees somelimes simply handled the pupae with the fore legs but did not atually reposition i hem.

Bees oceastonally extended the proboscis to the brood or bil genlly at the brood with their mandibles: such behavibur was sategorised as "grooming brood". This hehaviour was rarely observed. Grooming may have occurred during mevires or with handling hut it was difficult of observe the liner movestents of such behaviour hecause of the speed of movement of the prohoscis and the limited maynilication.

ovipostion

When "Ovipositing", the female oriented thersell so thas the head promed towatels the nest entrance Doring egg laying hees were observed in one of thee prostions: ventral sumfere facing upwads, dorsal sutlace facing upwards and lateral surface facherg
 Was exteroled. Oowe an eme had beeo deposited sin the flown of the nost, the hee rearacted the stingApproximately I-6 noin passed betore the fenale turned arnumed and inspected the egy with the imtennas.
(2vipusition nesurred close tor the nest end (0) 5 (mon) and was theservel for 4 Majors and I Miner (s separate colomes) Iodividuals rom appooximately
 look 38 min to licy चll cyg.

Discussion

Behaviour has prevoursly heen studted in dexail lifi
 (Batrat e't al: 1902), Altoderps cqolennee (Sieand) (Masol 1988) and I beonlor (Msliti W Schwarz 1993), Examerra tridemata eenergly axend is hanax amount of time inactive, simbla to other bees (Natas of al 1992: Batran et al, (9y)3). Activily tembed to the ageater im days when the tempurdures were shove
25. C. Siprifarly, when the temperture was wamer hees lended on forage mere and. especially after refun of 4 forager on the nest. general attivity appeared to increase
Exaurecor ridentater was not observed to exhibil the types of acse mandenance behaviours tound in nther alfolapines. probably duc to the hand nature of the nest substrate. Most allodapines exciavale thefi sivn thests if pithy substrate inaterial whereat b. tridentate do not. Although obsepvation nesses provided no upportumity for nest walls to decay during the course ofl the sludy, natural nests are also untikely to require epotise to the nest wall or entranse, since they alsuscote in line gratned wood Thise enntrasts with E, bicolor which pertorms varmus nest mithonance detivilies such as deatine and lampiny (removing loose material front the neat wall and atapiog next lamen). expending the nest Jumen excavatine sear of the burtow), collat constriction (lampine wood into it collar near nest entrarme) and remsying debtis (wowl strandel Ewanema ridentor may exhibit ond mathenunce activities to at gretoer degtee when bew nests ate bonded and there is a need to remove trash Iefo fochised by feetle larvac.
This study is the first to dextribe eceg lity ine it an Exomurra species. Egf laying was omly nbserveat during the day- athaush if thity alsi have mecurnos] at fight (observations were only made duritg the day) Fige layng wasemilar lor that deseribed for B.
 1492). Hawever twa of the three E. Bralentatu mation that were abserved oviposiluti were sately or never seen guardige. The thind majer was seen os ghand bul she wat liabilly 5 km lom the base of the nest and fot bed the untrance. This diflers from B.
 (Hogemdoofo de S.towath $1998 ;$ Rull if al an presc) where reproductive sominaos are guards. Enge laying in this spectes appears of be a very slons
 ii) (Mactia at al 1942) in rerms of buth the rime taken to deponel ant egy mat the fregrency of dge laying, Owe limate, in parbedial spent sh min dupseting un eges whine thay have heen melated to the line that the lemperature was low that dey (e) 2() Cl. and bees were generally lesk active il lower temperatures. However. (liese blater varibas did not eover the period of masimal egeg porduction and sfoukd be frested with cilltion.
Aggessive belaviour has not been reposted for wher allodipine bees except baredy herwem If turch and ibs sucial parasile bs. Keliago (Batsat el ah.
 (Mason 1988). The igeonistic hehaviour described of these ppeeies mamly eomethred of nudging, biling at lege and hodies and blockng paswage, hat alson
meluded stinging (Bata ef at. 1993: Mason 7988) Agonistic behaviour helween a hoss and its portraste is not uncommon and often results in sither hose of prabasite hemg removed from the nest (Batrat el al. 1993). Ageressive interations are also tound in soceial species of the bee sibes Haticion and Xylosopini (Byeed at al. 1978; Mrehener 1490). Howeper. E. fridentate was ofien ohedrved iss engage in aggressive encoumers which intolych a great deal of biong and arouggling, with some envorinters tecoming quite satage. Such seneounterswere often pressided by noteing ind followed by pasking - The mandibulating that ocelriod stmelimes. either prior ba ar in response wh madeing aid bituge mighe shou he agaressive in nature Cane \&
 produce irntanks which eficit vigornos grooming responses in predalery ants. Batrat el al. (LOMz) degeribed mandihulating durigg iggtessiont between B. miva and its sockil parasite B. kathager and suggested that mandibolar meretions were involved. II may theretore be suggesud that when FE, Themonate manditabale al each other, lifey atso
 on relay information abteur dommanee status.
The-qgonistise behavisurs onserved in I. Midemonz;
 wibhin colsmies. II appears that sembe ifdividuats congege in certain cypes of behavieur which could be: ioferpreted as assertion of dimmante. Bees that afe oflen pudged or bitten and those that exhitht avondance behaviour may have more subordmate moles in the nest. Difterences in the waty individuals reapernd at atien modividerals on terms of these behavinurs may be retated to dominanee tix. when sombe indivaduals are nutged they engage in a simple pasis, whereus. when other individush are nudged and/or bittell they argege in a cumplicated pass). Brothers de Micherier H974) lound that 'yneens' of Laxioghessum, aephrom were the maximal nudgers in the colsony. They suggested that nudging betavoou indicates dommance sunitor to that shserved in viluer promutively eastactal wasps and bees Brotheen of Miehener (197-1) expermentally showed. Ler 1 . Gephonum. that mudghe by the queen play at rote in the devision of labour absig the workers by imbitine ovariath developlisent.
During this sudy goading behasiour was not the sume as that observed in liche stadies al E. Iridenlata. i.c. with the ahdomen curled ad used to tolock the entramee from prakimors sucti its ants (Hurs unpuha-) This may he related to the thet that were wate no predation presstore in the shade house envirenmone antike studes on to bacolor esondueted in shade houses where ands were a problem (Bull ${ }^{1}$,Hust ${ }^{2}$)Henvever. Femates that were ghardiot wets always facing the botom of the nest wheh sugecst thet
they were in a prosition to biock the nest if the need arose.
Tropbaftaxis is altruishic behaviour, foragers engane in energetically costly and risky behavinur to ubtain fonod which they relinquish It onhers. Truphallaxis is important in the social organisation of many stecial insects (Wilson 1971). In allodaphes there mity be differences in the way in which Hophallaxis is performed. Exmeara bieolar have been ohserved is engige in solicibation behaviour before tepphallaxis oceum (Melnat \& Schwave 1993), Solicitation involved individats rapidly stroking cath sthers ambenma prom to buccal sontate Trophatlaxis in E. bicolder call atoa invalve une andividut proffering a globote of licpid of amothes (Meloia \& Schwars 1993). Proffering of globules Was not observed in E. Iridentara und if solicitation aseurred. it was ton fast to he identitied. Hewever, it is likely that individuals which engaged in "buecal contae" where neetar flow wat observed, were frequendy engaging in trophallaxis. Trophatbaxis affows tumates wh feed without leaving the nest. The presence of troplatlaxis in E: Etrifedmata therefore altows behaviooral specialisation where only some of the females have of forage and ather females ems poriom wher duties in the nest.
Exenturw rridentumexhibits a similar repertoire of betayiours to bither allodapines (Maeta el al. 1992. Batra eft al. 1993; Melna \& Schwary 1993), Rehaviours recorded in this study, includiog aduleaduft interactions and adult-hrosed inleractions, are
(Bit.I. N. J. 11994) Fusiociahity in a heathand population of :an Anstatam Allodapine bec, Exemeque tricolor Smith (Apidite Xylocopimac), BSe (Hons) thesita Dinders University of South Australia (umpub).

- H1ß与2, P \& (1993) Reprsdetive hierarchies in an Anstulian Alhodapine bee. Rewnowa biowlow Smity (Ambiophoridace, Xytocopenac). BSe (H (unsw) Inpais La Tratre University (mopub),
at similar to those foond for other species, suggesting that such behaviours are likely of he aneestral and that development of novel behavioufal elements is mot neecssary lor social organisation to evolve from snall family groups to large groups with mophological diferentiation atnong colony member.
Hosvever, molike other allodapines. E. Midentara exbibits frequent and oven agonistre behavinurn among nest mates. Such agonistic behavioor has often been associated witlo more primitively sociat species. Aceording to Wilson's (1971) eriterid. E trielontate can be elassed as highly cusocial because there is remale morphological dimosphism issociand with reproductive division of labour, Therefore, E. tridentala doesn' conform to. Wilson's (1971) suggestion that ageression within a colony can be replaced by "eenile despotism" as sociality involves larger grous) sire and requires a greater degree of integeation. Most other fighly easoctat specios display distinct moxphes Whien are difectly associated with discrete behavioural castes, involving minimad or no adgencssion. Considering the presence of aggressive mernations within I. Pridontate colonies it would seem that incrested eolony size and the developpoent of morprobegical diflecentiation among colony members need nond be acompanied by decreaned levele of avert intra-eaknty dgeranton.

Acknowledgments;

We would like to thank triends, and laboratory memhers who assisted will ficdd work and N . Bult. S. Reyes. P. Hursi, J. Birel atrd two amonymous referees for advice on the mamuseript. This sescareh trats pattially funded by granes from the Alsatradion Rescoreh Council to M. P. S. Foeld work ifas enrried out with pormixsion from the South Austatian Depafmeal of Enviromment and Natural Resources. permir mo. Q23256-()3. issued to M. E. S.

References

 s.amplits methads. Belmbianf 49, 227-267.

Balmi S. W. T' Sikatgimi. S. F.. \& Math. Y. (199 b) Relavisur af the Indian aflodupine bee Bratomaipio
 () ymenoptera: Anthoptoridas). 1. Kimasos Froumul Liん (6) $345-378$).
 Agennistje Behuvioum social interactomss, ime betaviousal specialisalfon io at primetiycly busocial bee Insectes Suctally, Paris. 25, 351-36t.
Brothers, D. 1. \& Michemer. (4, 1), 11974) Imerations in
 Levison का lithnue in Letsioghoxamm -spleyrume.
 16it.
 1. \& Sclowary M. P (in prewa) Equine your dametiters the edye beyozathing reppoductive
 Sien: 8\% (Secter B).
 imenson mf mandibulat eland products of bees of the Eennes Lanhoura Hymenoptera: Anhophoridac) . (chemi. Eepl. 9. 1525-1531.

Ihouspos. T. F. (1977) Nesting hombey at there allordapime
 S Amse 101 502-113

Hurst, P. S. \& Schwarz, M. P. (1996) Morphological differences among females ol the eusocial allodapine bec, Exoneura trideniata (Hymenoptera: Apidae). Proceedings of the XX International Congress of Entomology, Firenze Italy 25-31 August, p. 413.
Jeanne, R. L. (1986) The evolution of the organisation of work in social insects. Monitore zool. Ital. 20, 119-133.
Maeta, Y., Sakagami, S. F. \& Michener, C. D. (1992) Laboratory studies on the behaviour and colony structure of Braunsapis hewitti, a Xylocopine bee from Taiwan (Hymenoptera: Anthophoridae). Univ: Kansas Sci. Bull. 54, 289-333.
MAson, C. A (1988) Division of labour and adult interactions in cusocial colonies of two allodapine bee species (Hymenoptera: Anthophoridae). J. Kansas Entomol. Soc. 61, 477-491.
Milina, P. A. \& Schwarz, M. P. (1993) Behavioural specialisation in pre-reproductive colonies of the allodapine bee Exoncura bicolor (Hymenoptera: Anthophoridae). Jusect. Soc. 38, 1-18.

Michlener, C. D. (1965) The life cycle and social organisation of bees of the genus Exoneura and their parasite, Inquilina. Univ. Kausas Sai. Bull. 46, 317-358.
(1972) Activitics within artificial nests ol an allodapine bee. J. Kansas Entomol. Soc. 45, 263-268. (1974) "The social behaviour of bees: a comparative study" (The Belknap Press ol Harvard University Press, Cambridgc, Massachusetts).
(1975) A taxonomic study of African allodapine bees. Bull. Amer: Mus. Nat. Hist. 155, 67-240.
SChwarz, M. P. (1994) Fcmale biased sex ratios in a facultatively social bee and their implications for social evolution. Evolution 48, 1684-1697.
\& Overholi, L. A. (1993) Methods for rearing allodapine bees in artificial nests (Hymenoptera: Anthophoridae). Aust, ent. Soc. 32, 357-363.
Wilson, E. O. (1971) "The insect societies" (The Belknap Press of Harvard University Press, Cambridge, Massachusetts).

[^0]:

